Encoding of event timing in the phase of neural oscillations
نویسندگان
چکیده
Time perception is a critical component of conscious experience. To be in synchrony with the environment, the brain must deal not only with differences in the speed of light and sound but also with its computational and neural transmission delays. Here, we asked whether the brain could actively compensate for temporal delays by changing its processing time. Specifically, can changes in neural timing or in the phase of neural oscillation index perceived timing? For this, a lag-adaptation paradigm was used to manipulate participants' perceived audiovisual (AV) simultaneity of events while they were recorded with magnetoencephalography (MEG). Desynchronized AV stimuli were presented rhythmically to elicit a robust 1 Hz frequency-tagging of auditory and visual cortical responses. As participants' perception of AV simultaneity shifted, systematic changes in the phase of entrained neural oscillations were observed. This suggests that neural entrainment is not a passive response and that the entrained neural oscillation shifts in time. Crucially, our results indicate that shifts in neural timing in auditory cortices linearly map participants' perceived AV simultaneity. To our knowledge, these results provide the first mechanistic evidence for active neural compensation in the encoding of sensory event timing in support of the emergence of time awareness.
منابع مشابه
Using Neural Network to Control STATCOM for ImprovingTransient Stability
FACTS technology has considerable applications in power systems, such as; improving the steady stateperformance, damping the power system oscillations, controlling the power flow, and etc. STATCOM is oneof the most important FACTS devices used in the parallel compensation, enhancing transient stability andetc. Since three phase fault is widespread in power systems, in this paper STATCOM is used...
متن کاملTracking cognitive phases in analogical reasoning with event-related potentials.
Analogical reasoning consists of multiple phases. Four-term analogies (A:B::C:D) have an encoding period in which the A:B pair is evaluated prior to a mapping phase. The electrophysiological timing associated with analogical reasoning has remained unclear. We used event-related potentials to identify neural timing related to analogical reasoning relative to perceptual and semantic control condi...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 92 شماره
صفحات -
تاریخ انتشار 2014